

# EURL-CAMPYLOBACTER TRAINING COURSE THE ORGANISATION OF PROFICIENCY TESTS Design and performance assessment Helena Höök, DVM, PhD

9th October 2019

SVA

# EURL Campylobacter

#### OUTLINE

- Planning
- Production of proficiency tests
- Statistical design
- Assessment of performance
- ISO/IEC 17043:2010: General requirements

-ISO 22117:2019: Microbiological proficiency testing

 Guidance Document for the organisation of Proficiency Tests by NRLs for national networks, including partial outsourcing



# TO PLAN A PROFICENCY TEST



- PPF = project planning form
  - Purpose(s)
  - Objectives
  - Basic design
- Challenging or realistic approach?
- Interest of stakeholders (official laboratories)



## **PRODUCTION OF PROFICIENCY TESTS**

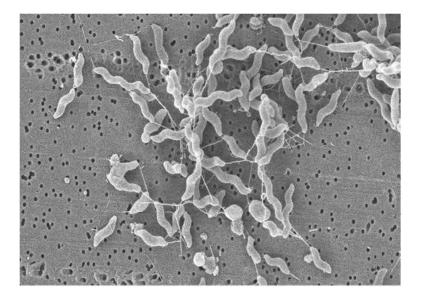
- Microbiological material
  - Measurand/target organism(s) / background flora
  - Live cultures: spiking, how and when
    - Stressed bacteria?
  - Freeze-dried strains
  - Other forms of microbiological reference material
- Matrix/matrices
- How can homogeneity and stability of the tests be assured?

# HOMOGENEITY AND STABILITY



 Criteria for suitable homogeneity and stability ... shall be based on the effect that inhomogeneity and instability will have on the evaluation of the participants' performance

#### ISO/IEC 17043 4.4.3.1


 Note: Materials not sufficiently homogeneous or stable can still be useful, provided that uncertainties of assigned values or evaluation are taken into account



# **SELECTION OF STRAINS**

- Bacterial species
- Origin
- Specific characteristics
- Use of duplicates
- Mix of strains







#### **MATRIX MATTERS**



- Relevant matrix?
- Realistic matrix?
- Target microorganism and background flora in relation to the matrix





## **DESIGN AND EVALUATION**



- Design and evaluation: hand in hand
- Both are parts of the statistical design



#### **DESIGN ACCORDING TO ISO/IEC 17043:2010**

- 4.4 Design of proficiency testing schemes: general strategies and specific design of quantitative tests (assigned values)
- 4.5 Choice of method or procedure
  - Normally expected to use test method of their choice
  - Should be consistent with their routine procedures
- 4.7 Data analysis and evaluation of proficiency testing scheme results
- Annex A: Types of proficiency testing schemes
- Annex B: Statistical methods for proficiency testing



## **DESIGN ACCORDING TO ISO 22117:2019**

- 4 Scheme design and purpose
- 5 Technical requirements and guidance for sample design and content
- 6 Sample verification by the provider
- 7 Sample handling
- 8 Performance evaluations
- Annex C (informative) Methods of testing for variation between portions of test materials
- Annex E (informative) A practical method to assess long term performance of participants in PT schemes using enumeration methods



### STATISTICAL DESIGN – CRITERIA (ISO/IEC 17043)



- Meet the objectives
- Based on
  - nature of the data: quantitative or qualitative (ordinal or categorical)
  - statistical assumptions
  - nature of errors
  - expected number of results



#### **STATISTICAL METHODS FOR PROFICIENCY TESTING (ANNEX B ISO/IEC 17043)**

- Fundamental steps
  - a) determination of the assigned value,
  - b) calculation of performance statistics,
  - c) evaluation of performance, and
  - d) preliminary determination of proficiency test item homogeneity and stability



## DESIGN OF QUANTITATIVE TESTS: ASSIGNING A VALUE



- The assigned value: value attributed to a particular property of a proficiency test item
- Alternative procedures according to Annex B in ISO/IEC 17043:
  - a) known values
  - b) certified reference values
  - c) reference values
  - d) consensus values from expert participants
  - e) consensus values from participants
- Uncertainty of the assigned value
- ISO 22117: mostly consensus values from participants



### DESIGN OF QUANTITATIVE TESTS (GUIDANCE DOCUMENT)



- 4 levels: negative, low, medium and high (1 replicate/level)
  - May be reduced to 3 levels
  - Negative level: to verify the absence of false positive results, possibly due to crosscontamination at a participating laboratory. The target bacterium has to be not detected, other background flora can be present.
  - Low level: close to the enumeration limit of the method, but avoid that participants may obtain a count on a plate of <10 cfu, corresponding to an estimated number according to EN ISO 7218.
  - Medium level (optional).
  - High level.
- The choice of the low, medium and high levels should take into account the regulatory limit(s) for the target microorganism and matrix.

#### ASSESSMENT OF QUANTITATIVE TESTS ACCORDING TO ISO 22117

- Using z-scores
  - Using scaled median absolute deviation (MADe) from the median values
- Other methods
  - Using the 0.5log<sub>10</sub>rule
  - Using percentiles
  - Poisson 95% confidence interval



# **DESIGN OF QUALITATIVE TESTS**



- ISO 22117:2019: 6 replicates at each of 3 levels (negative, low and high)
- Alternative design with 10 samples (Guidance document):
  3 levels: negative, low and high
- **Negative level** (2 samples per participant)
- Low level (6 samples per participant as a minimum):
  - goal: approach the regulatory limit or LOD<sub>50</sub>
  - in practice: Poisson distribution  $\rightarrow$  part of test portions may not be contaminated
  - ISO 22117: approach to deal with low level samples and interpret the results:
    - comparison of the proportion of positive replicates to the expected proportion according to the binomial distribution
  - may be difficult to achieve in practice a level of up to 10 times acceptable (e.g. 1–10 cfu/test portion if the goal level is 1 cfu/test portion)
- **High level** (2 replicates per participant):
  - level giving 100% positive results for all replicates.
  - approx. 5–10 times the low level (e.g. 50–100 cfu/test portion if the low level is 10 cfu/test portion)

#### PERFORMANCE ASSESSMENT – QUALITATIVE TESTS



- Samples with low levels, where a fractional recovery can be expected, can be evaluated with a probabilistic approach
- Example: using the binomial distribution and the percentage of samples found positive at a 95% confidence level
- However, such low levels can be a both practical and pedagogical problem



#### PERFORMANCE ASSESSMENT – SCORING AND GRADES



- Scoring systems for more test items (e.g. 10 enumeration samples): how to set limits?
- Grades, how many and which levels should be used?



#### SUMMARY DESIGN AND ASSESSMENT

- Purpose and objectives
- Considerations in production of tests
  - Target
  - Matrix
  - Background
  - Quality control
- Design and evaluation hand in hand
  - Quantitative tests
  - Qualitative tests



